plant height, maturity and yield of transgenic BT cotton(Gossypium hirsutum L.) at varying Plant Growth Regulators

Xiaoming Ren, Xifeng Fan, Mingwei Du, Xiaoli Tian, Liusheng Duan and Zhaohu Li State Key Laboratory of Plant Physiology and Biochemistry, Center of Crop Chemical Control, China Agricultural University, Beijing 100193, China

Introduction & Objectives

Plant Growth Regulators (PRGs) are widely used on cotton production in China. Mepiquat Chloride (MC) is a plant growth regulator that has been used in cotton production for several decades as a management tool in controlling vegetative growth. Mepiquat chloride is a gibberellic acid suppressant that is restricting additional plant height increases. Mepiquat chloride has also been associated with enhancing earliness with regards to fruiting development. Dicthyl amino ethyl hexanoate (DA-6) is transgenic insect-resistant cotton at seedling stage. The experiment was conducted to study the effects of variety of plant growth regulators (MC, DA-6, MC+DA-6) on plant height, maturity

Materials and methods

April and harvested at the end of October in 2004, while 25 April

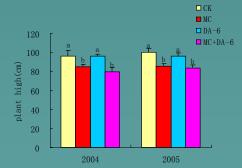


fig. 1. Effects of PGRs on plant height(cm)

Both MC and MC+DA-6 treatments reduced the plant height significantly in 2004 and 2005. DA-6 treatment did not affect the plant height. Using of MC and MC+DA-6 could significantly reduced the length of fruiting branches.DA-6 elongated the length of 4-6 sympodiabranch. In 2004, Treatment with MC+DA-6 was remarkably increased the lint yield than the other three treatments. MC and DA-6 did not significantly affect lint yield (table 1). While in 2005, both MC and MC+DA-6 treatments significantly enhanced the lint yield. Lint yield of the treatment with DA-6 has no difference with CK. In 2005, treatment with MC and MC+DA-6 increased the number of bolls per plant (table 1), boll weight and lint percentage. Bolls number of fruiting branch 1-In 2005, both MC and MC+DA-6 treatments increased the second node's boll number, DA-6 has no significantly influence.

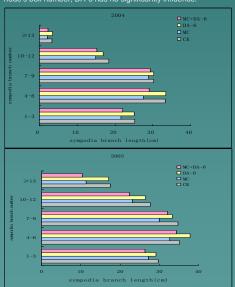


fig.2. Effects of PGRs on sympodia branch length in 2004 and 2005

Table 1. Lint yield, bolls number per plant, boll weight, and lint percentage as influenced by different plant growth regulator (PGR) treatment.

year	treatment	lint yield (kg/ha)	boll no. (per plant)	boll weight (g)	lint percentage (%)
2004	CK	1170.8ъ	7.6a	4.46b	39.3a
	MC+DA-6	1331.5a	7.7a	4.85a	39.5a
2005	CK	1199.3ь	12.7b	4.43a	37.3a
	MC	1373.3a	13.8a	4.57a	37.3a
	DA-6	1230.5b	13.0b	4.45a	37.4a
	MC+DA-6	1375.7a	14.0a	4.56a	37.3a

Table 2. boll locules, boll weight, boll shell weight, and full seeds as influenced by different plant growth regulator (PGR) treatment.

	treatment	boll locules	boll weight (g)	boll shell weight (g)	full seeds
2004	CK	4.20a	4.46b	1.76b	27.03a
	MC	4.28a	4.51b	1.95a	27.33a
	DA-6	4.25a	4.48b	1.78b	27.17a
	MC+DA-6	4.22a	4.85a	1.76b	27.95a
2005	СК	4.12a	4.43a	1.29a	26.21b
	MC	4.15a	4.57a	1.38a	26.55b
	DA-6	4.13a	4.45a	1.34a	26.30b
		4.10a	4.56a		27.03a

		sympodiabranch			
year					
	СК	2.50a	3.20b	1.85a	
		2.59a	3.57a	1.09b	
	DA-6	2.52a	3.33b	1.90a	
	MC+DA-6	2.60a	4.01a	1.06b	
2005	CK	5.64b	4.81c	2.54a	
		6.00ab	5.88b	1.69b	
	DA-6	5.65b	4.85c		
			6.26a		

Table 2. boll weight of different nodes as influenced by different plant growth regulator (PGR) treatment.

			nodes	
year	treatment			
		4.00a		0.72b
	DA-6	3.79a	2.52a	1.21a
	MC+DA-6	3.67a	3.07a	0.93ab
2005	CK	6.31a	4.28b	2.83a
			4.23b	2.85a
	MC+DA-6	5.56b	5.69a	1.95b

Discussion

inhibit the excess vegetative growth of insect-resistant transgenic cotton GK12, which decreased the plant height and reduce the length of fruit branches. the treatment with DA-6 appeared less control than MC and MC+DA-6. In addition, both mixture and MC could increase However, mixture could increase cotton yield more obviously than MC.

References

Cathey, G.W. and W.R. Meredith, 1988. Cotton response to planting data and mepiquat chloride. Agron.J. 80:463-466. He, Z.P. 1993. Lab guide for crop chemical control. Beijing

Agricultural University Press. erby, T.A.,1985. Cotton response to mepiquat chloride. Agron. J.

Kerby, T.A., K. Hake, and M. Keeley. 1986. Cotton fruiting modification with mepiquat chloride. Agron. J. 78:907-912.